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Synopsis 

The time-dependent response of a viscoelastic liquid to unsteady one-dimensional stretching 
deformations was examined. Oldroyd's three-constant model for a viscoelastic fluid was used. 
Two cases representing two different stretching histories were analyzed a sine stretching pulse 
and a step stretching pulse. The results show that high elongational viscosity may be easily 
reached in both cases. As the relaxation time of the liquid becomes comparable to the pulse 
width, elongational viscosity increases with the increase in maximum stretching rates. Condi- 
tions to maintain high levels of elongational viscosity at a subsequently reduced stretching rate 
were given as functions of the relaxation time and initial stretching rates. In view of recent tur- 
bulent boundary layer data, the results were used to discuss possible explanations of turbulent 
drag reduction in polymer solutions. It was concluded that the basic mechanisms for drag re- 
duction may be related to the effects of high elongational viscosity and local stabilization of small 
shear disturbances. 

INTRODUCTION 

It has been known for some time that dilute solutions of certain high mo- 
lecular weight polymers exhibit reduced frictional drag in turbulent flow. In 
explaining the basic mechanisms for drag reduction, it is generally accepted 
that the viscoelastic effects of polymer solutions are important since drag- 
reducing polymers do show various viscoelastic properties at  high concentra- 
tions.' However, in spite of the intensive research of the past fifteen years, a 
completely satisfactory explanation has not yet been found. The reason is 
quite evident in that the complex nature of the turbulent flow is not under- 
stood and yet defies exact mathematical analysis. Furthermore, the visco- 
elastic properties of dilute polymer solutions are not well known so that the 
formulation of an exact constitutive law is difficult. The combination of 
these two limitations makes it necessary to seek an alternative, simplified ap- 
proach. 

There are two distinct features of the turbulent drag reduction phenome- 
non. The most striking characteristic is probably the fact that the addition 
of only a few parts per million by weight of polymer can easily cause a reduc- 
tion of the frictional coefficient by a factor of 2. Secondly, drag reduction is 
always associated with the presence of wall turbulence, either in turbulent 
pipe flows or in a turbulent boundary layer. Therefore, one possible ap- 
proach is to seek for a simple, well-defined flow geometry in which the solu- 
tion response is substantially different from that in the solvent alone. It is 
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also preferable that such a flow closely model one of the structural compo- 
nents of a turbulent wall layer, where the drag reduction effect takes place. 
It is hoped that this type of study may serve as an intermediate step toward 
the understanding of the mechanisms involved in turbulent drag reduction. 

Several investigators have pursued this line of approach, and the results 
suggest that three flow geometries may be important in formulating explana- 
tions for drag reduction: (1) simple transient shear flow, (2) elongational 
flow, and (3) the stability of small disturbances in steady shear. The various 
proposed mechanisms are briefly developed here: 

1. It was proposed that polymer viscoelasticity affects transient shear 
flows. Ultman and Denn2 first suggested that flow structure may be changed 
if flow velocity exceeds the finite propagation speed of shear waves in a visco- 
elastic fluid. Ruckenstein3 later showed that the shear stress in an element 
of fluid in contact with the wall for a given period of time is smaller in the vis- 
coelastic case than in the Newtonian one. Similar results were also obtained 
by H a n ~ e n . ~  However, in these initial investigations, the convected Maxwell 
model was employed, where the contribution of the solvent effect was com- 
pletely neglected. A recent s t ~ d y , ~  using a more complete constitutive rela- 
tion, reexamined the time-dependent shear flow and showed that viscoelastic 
effects in this case were negligibly small. The minimal difference between 
solvent and solution suggests that this flow geometry is not important in tur- 
bulent drag reduction. 

2. The high viscosity of polymer solutions in elongational flow has been 
proposed to be responsible for drag reduction. Peterlin? among others, 
pointed out that polymer molecules may interact with turbulent eddies to lo- 
cally store energy and change the energy budget by producing a significant 
viscosity contribution in a dilational flow field. Everage and Gordon7 carried 
out a calculation to show the existence of an exceedingly high elongational 
viscosity in a viscoelastic fluid subjected to a constant steady stretching. Pa- 
terson8 suggested that the high elongational viscosity is related to the dissipa- 
tion within polymer coil in addition to the work required to perform elastic 
deformation. And since turbulent drag reduction and elongational viscosity 
appear to be the only two large macroscopic effects taking place at  very low 
polymer concentrations, it seems to indicate that the two phenomena may be 
related. 

3. The stability of small disturbances in a turbulent boundary layer was 
also suggested to be involved in the drag reduction effect. Landahlg recently 
applied a two-scale boundary layer turbulence model to examine the effect of 
polymeric additives on a small scale fluctuating field. His calculation, based 
on the Batchelor-Hinch suspension model,1° demonstrated a strong stabiliz- 
ing effect on high wave number components. Such an effect was expected to 
lead to an increase in the size of the smallest stress-producing eddies and a 
corresponding increase in the wall layer thickness. Since the thickened lami- 
nar sublayer has been experimentally observed in dilute solutions,ll it was 
proposed that the mechanism of drag reduction is associated with the stabili- 
zation of secondary disturbances in a turbulent boundary layer. 

Since the transient shear response of dilute polymer solutions is very simi- 
lar to that in water alone,5 it seems reasonable to rule out the transient shear 
flow as an important geometry in examining the basic mechanism of turbu- 
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lent drag reduction. The proposals related to the high elongational viscosity 
and the stabilization of the secondary disturbances in turbulent boundary 
layers are attractive, but they also suffer certain limitations. First of all, the 
elongational viscosity has been shown to be an increasing function of time if a 
constant, steady stretching is a ~ p l i e d . ~  Polymer solutions do not exhibit the 
high elongational viscosity effect until the stretching rate exceeds certain lim- 
iting value and the flow time exceeds the terminal relaxation time of the liq- 
 id.^ Therefore, it may be questionable whether in a turbulent boundary 
layer conditions would prevail to permit such an effect to take place. Sec- 
ondly, this proposal was based on the analysis of constant stretching. From 
practical point of view, the time-dependent material response in the highly 
transient and chaotic environment of a turbulent boundary layer needs to be 
examined. The polymer solutions may be reacting to a history of variable 
stretchings and the solution behavior in this respect is therefore very impor- 
tant in the fundamental understanding of the phenomenon. Lastly, con- 
cerning the proposal of the stabilization of local disturbances, Landahl’s sta- 
bility analysis was based on a model which portrays the polymer molecules as 
long rigid rods, whereas it is well known that the dissolved polymer molecules 
tend to coil up to maintain a roughly spherical configuration. Hence, the ap- 
plicability of the stability argument to turbulent drag reduction depends 
heavily on whether it can be justified to assume a sufficiently extended con- 
figuration for these macromolecules. By employing a continuum viscoelastic 
fluid model, this report represents an initial attempt to try to answer these 
questions. The response of polymer solutions to some simple stretching de- 
formations will be analyzed, and the results will be used to discuss these pro- 
posed drag reduction mechanisms. 

MODEL 

The Oldroyd three-constant model for a viscoelastic liquid12 is used, 

and the time derivative is defined as 

where a i j  is the stress tensor, e i j  = ( u i j  + u j , i ) / 2  is the strain-rate tensor, and 
U i j  = (Uj,i  - ~ i , j ) / 2  is the vorticity tensor. This model is qualitatively applica- 
ble for the flow of dilute power solutions, because Oldroyd’s original formula- 
tion was based on a structural model for a colloidal suspension in which 
Hookean elastic spherical particles were supposed to be distributed in a New- 
tonian viscous liquid. There are three material constants in eq. (1): q is the 
viscosity of the liquid, XI is a stress relaxation time, and A2 is a strain relaxa- 
tion time, both having the dimension of time and a positive sign. Oldroyd 
further explained this model as follows: “The physical model is such that XI 
> A2 and such that, as A1 and A2 tend to equality, the material becomes more 
and more exactly a Newtonian liquid of viscosity q.”12 Furthermore, this 
model was chosen because it has been shown that it may be identified with 
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the resulting stress-strain relation derived from the equation of motion for 
isolated polymer molecules based on the dumbbell m0de1.l~ The material 
constants are related to the molecular properties through the following rela- 
tionships: 

( 2 )  

(3) 

where vs is the viscosity of the solvent, c is the polymer concentration, and [v] 
is the intrinsic viscosity. The time constant A1 was identified to be the “ter- 
minal relaxation time” X of polymer solution.’* By using eqs. ( 2 )  and (3), the 
constitutive relation thus becomes 

?I = v s ( 1  + c[vl> 

A2 = h/(l + c [ T I )  

The stress component a i j  can be considered as consisting of the pure-viscous 
contribution from the solvent, 2 v s e i j ,  and the contribution of polymers, ~ i j .  

so, 
b i j  = 2 q s e i ,  + ~ i j  

and it can be shown that Tij satisfies 

Since only the viscoelastic response is of the interest here, eq. (6) will be used 
in the following analysis. The viscoelastic stress components ~ i j  will simply 
represent the additional contribution the viscoelastic nature of the liquid 
would introduce besides the Newtonian viscous effect. 

ANALYSIS 

Now, consider a column of viscoelastic liquid stretched at  a rate r with its 
axis oriented in the 11 -direction. The velocity field 

causes the strain rate tensor to be 

[eij] = 

r o  o 
r 0 -- 0 2 

r 
0 0 -3 

and the vorticity tensor [ w i j ]  identically zero, so the field is irrotational. The 
viscoelastic stress components may then be evaluated using eqs. (6) and (8): 

- 2r(t)T11 = ~ ~ ~ c [ ~ ] r ( t )  ( 9 4  1 
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733 = 722. (9c) 

All the shear components vanish. Equation (9) can readily be integrated to 
give 

These represent the viscoelastic contribution to the total stress tensor in re- 
sponse to a specific stretching history Ut) .  Two different cases will now be 
considered. 

Case 1. Sine Stretching Pulse 

Recently, Kline et  al.15 and Corino and Brodkey16 performed flow visual- 
ization experiments to observe flow structures near a solid boundary. They 
reported that turbulence generation was associated with the “bursting” phe- 
nomenon taking place in the wall layer region. Fluid elements near the wall 
were observed to rapidly lift up and “burst” into regions away from the wall. 
Such bursting processes apparently are of an unsteady stretching nature ap- 
pearing periodically as pulses in the wall region. Since the detailed time de- 
pendence of such stretching motions is not yet known, it is difficult a t  the 
present time to assign specific wave forms to such pulses. However, if one 
can Fourier-analyze such a pulse so to consider it as an ensemble of different 
sinusoidal modes at  discrete frequencies, then it seems to be constructive to 
examine the viscoelastic response of polymer solutions to a sinusoidal pulse. 
Assume a stretching history of the form 

(11) 
*t r(t)  = rosin - 
a 

where r o  is the peak stretching value and a the pulse width. Substituting 
into eq. (lo), one may obtain expressions for the stress components 711 and 
722. In dimensionless form, for 0 I t I a, 

X soi sin ~8 exp cos ?re de (12a) 1 
X Xi sin a8 exp cos ~8 d8 (12b) 1 

where X = hla, f = t la ,  8 = Bla, and Fo = roa. 
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For t 1 a or t I 1, the long time response to the stretching pulse is 

A reduced elongational viscosity is defined as 

This definition in dimensionless form allows for the effects of concentration, 
molecular weight, and solvent viscosity through c, [ q ] ,  and qs. The time de- 
pendence represents the viscoelastic response of the liquid to the deforma- 
tion, in this case eq. (111, and may be evaluated from eqs. (12) and (13). 

Case 2. Step Stretching Pulse 

Now, to examine the material behavior responding to a series of variable 
stretchings, consider the simple case in which a constant stretching rate ro is 
applied for a time period o f t  = a. Then, the stretching rate "steps" down to 
a lower value pro, (p <l), i.e., 

0 5 )  I ryt) = ro o <  t < a  
= pro ( p < i )  a 

= o  t > 2a 

By substituting eq. (15) into eq. (lo), the stress components may be calculat- 
ed for each of the three separate time domains. In dimensionIess form, they 
are 
( i ) o < t  < a o r O < t < 1 :  

(ii) a < t < 2a or 1 < t < 2: 

l + p X F o  - 

P 1 + pXF0 

~ 2 ~ ( i )  = - 1 + -1 xro [ 1 - exp (-'+;'o)]exp[- ~ i; (t - l)] 

(i - 1)) 1. (17b) x - v [ 1 - expl- 
1 + xr, 
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(iii) t > 2a or t > 2: 

The reduced elongational viscosity i j ,  as defined in eq. (14), may now be 
evaluated. It should be pointed out that in addition to the classical limiting 
behavior of i j  at f'o = 1/2X for stretching, there exists other singularities f'o = 
1/2pX. However, since p < 1, this represents a higher stretching rate; so, 
from the experimental point of view, it needs not to be concerned with be- 
cause the first limiting stretching rate will be easier to observe and more in- 
teresting. 

RESULTS AND DISCUSSION 

The response of the viscoelastic liquid to the deformation, eq. ( l l ) ,  is 
shown in Figure 1. It can be seen that the stress response lags the strain rate 
input and continues to increase even for t > 0.5, after the maximum stretch- 
ing rate ro is reached at  t = 0.5. For lower Po, i j  reaches a peak value slightly 
before t - 1. This maximum gradually shifts to large t value for higher and 
higher ]TO. Very high elongational viscosity may be reached since the growth 
of i j  becomes more rapid as ro increases. For 2 > 1, the stretching vanishes 
and an exponential decay of the stresses starts. The decaying rate depends 
on the relaxation time scale X; the shorter X is the faster the decay becomes. 
Figure 2 shows the effect of relaxation time X on the reduced elongational vis- 
cosity i j .  The values of i j  at t = 1, i.e., the maximum i j  in most cases, are plot- 
ted against Fo with X as a parameter. It again shows that i j  increases with FO 
very rapidly. Furthermore, the greatest effect seems to take place as X - 1. 
Intuitively, for too small a X, the material is completely relaxed during the 
stretching period and behaves more like a Newtonian viscous liquid. For 
higher X, the material does not have enough time to allow for the stress build- 
up: Only as X - 0(1), the viscoelastic effect is most pronounced. 

For a stretching history represented by eq. (151, the growth of elongational 
viscosity is shown in Figures 3 and 4, respectively, to demonstrate the effects 
of f'o and X. The conclusion here is similar to that for the previous case of 
sine stretching pulse. Namely, a t  constant X, the elongational viscosity be- 
comes greater as FO increases. For fixed Fo, the effect is the greatest as X - 
O(1). 

The response may generally be described in this way. For 0 < 2 < 1, i j  in- 
creases rapidly in response to the first stretching "step" at  F = Fo. The rate 
of this increase scales with f'o and X. For t > 2, the stretching is completely 
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t 

Fig. 1. Growth of elongational viscosity at X = 1. 

cut off, and the stress relaxation takes place in an exponential fashion. The 
rate of relaxation inversely scales with the relaxation time X. Note especially 
the case of X = 0.08, in which relaxation takes place so,rapidly that ij de- 
creases by one decade for a time period t of only 0.1. For 1 < t < 2, the liq- 
uid experiences a reduction in the stretching rate from F = FO to pF0 with p 
< 1; the response then depends strongly on the parameter p. For higher p 
values, the reduced elongational viscosity ij continues to increase from t = 1, 
whereas as p decreases, i j  may start decreasing. The response is seemingly 
exponential. Unfortunately, an analytical expression for p for the zero 
growth of ij could not be obtained. 

However, the behavior of maintaining a constant value of i j  may be studied 
numerically for 1 < Z < 2 by adjusting the value of p. In Figure 5, this p 
value for the zero growth of ij is plotted against F. For each Fo, ij will in- 
crease for p values above the curve (represented by i j  ( t )  > 0) and decrease 
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Fig. 2. Elongational viscosity at t = 1 vs. ro. 

for p values below the curve (represented by i j  ( Z )  < 0). It is interesting to 
observe that as FO or X increases, a very small fraction of the original f’o is 
needed to sustain the growth of i j .  For example, a t  X = 1, FO = 5, only one 
tenth of the original stretching is required to maintain i j  a t  the ij(1) level of 
1.7 X lo3. Hence, a high elongational viscosity may very possibly and easily 
be reached and maintained in cases where such stretching histories exist. 

It is now useful to consider some recent turbulent boundary layer measure- 
ments in light of the above calculations. As mentioned above, Kline et  al.I5 
observed that turbulence generation is associated with the turbulence “burst- 
ing” in the wall region. The burst is a violent process occurring primarily in 
the wall zone in terms of the wall parameter 0 < y + <loo. The observation 
suggested a vortex lifting up from the wall region of a turbulent boundary 
layer like a snapped hair-pin. As it is transported downstream, this vortex is 
stretched by the main shear, a process described by Corino and BrodkeylG as 
the “sweep” of high-speed fluid. The turbulent bursting is highly intermit- 
tent and therefore extremely difficult to detect by means of ordinary statisti- 
cal methods. 
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More detailed quantitative information is only very recently becoming 
available through the developments of new experimental techniques. For ex- 
ample, Blackwelder and Kaplan17 carried out hot-wire measurements of tur- 
bulent fluctuations in a turbulent wall layer. Based on selective sampling of 
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t 

Fig. 3. Viscoelastic response to a step stretching at  X = 1. 
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signals during bursts, they have succeeded in determining the average instan- 
taneous velocity components just preceding the burst. Figure 6 is one of 
their typical results, showing the instantaneous streamwise velocity compo- 
nent u ( t )  at y+ = 16.5 as normalized by the local wall shear velocity u+ and 

’ / p.0.2 \ 

..- 0 I 2 3 

Fig. 4. Viscoelastic response to a step stretching at Fo = 5. 

- 
t 



1242 TING 

ro = 5.0 
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I 
O0.l - x 

Fig. 5. The values of parameter p for zero growth off .  

the local mean velocity ii. The Reynolds number based on the momentum 
thickness is 2500. This result clearly shows a large velocity fluctuation about 
the mean value as the bursting takes place. If one looks at  a fluid element 
from a Lagrangian point of view, it suggests that locally a strong stretching 
motion is experienced by the fluid. The time scale involved here is of the 
order of milliseconds. 

Now, consider polyethylene oxide, a well-known drag-reducing polymer, 
for example. A compound with an intrinsic viscosity of 17.6 dllg in water at  
30°C will have an estimated molecular weight 4 X lo6 based on the Mark- 
Houwink equation developed by Bailey et a1.I8 The terminal relaxation time 
as calculated from the molecular theory14 is 2.27 X second. Therefore, 
if this stretching motion is considered as a stretching pulse, one would have X - 0(1), in which case the viscoelastic response of the liquid to such motions 

Re 2500 

- 2 0  -10 0 10 20 30 40 
t (sec x 10 3) 

Fig. 6. Instantaneous streamwise velocity in a turbulent boundary layer at y +  = 16.5 (ref. 17). 
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Fig. 7. Instantaneous velocity profile in a turbulent wall layer (ref. 17). 

could be the strongest to show very high elongational viscosity. A t  a reason- 
able value of = lo2, a 100 parts per million (ppm) dilute aqueous solution of 
this polymer would exhibit a stress level of (~11-~22)/q,r = 17.6, as opposed to 
3 in water,lg a more than fivefold increase. This produces extensive viscous 
dissipation in polymer molecules to suppress the “lifting up” of fluid ele- 
ments that leads to the growth of small eddies which thus results in a sub- 
stantial-reduction in the wall shear stress. The actual stretching rate in- 
volved is more difficult to determine at  this stage. A detailed Lagrangian 
analysis of the data, such as those of Blackwelder and Kaplan17 or of Will- 
marth and Lu,~O seems to be in order for future studies. However, from the 
calculation presented here, it is evident that the effect of high elongational 
viscosity could be very important in relation to the basic understanding of 
turbulent drag reduction. 

Blackwelder and Kaplan17 also carried out measurements using a probe 
containing ten hot wires to obtain an instantaneous velocity profile across the 
turbulent wall layer. They observed that during bursting there was a sub- 
stantial streamwise momentum defect followed by an extremely rapid accel- 
eration. While, as mentioned above, the acceleration may suggest a strong 
stretching of local fluid elements, the streamwise momentum defect suggests 
a local instability. A reconstruction of their data leads to a plot shown in 
Figure 7. Compared with the mean velocity profile i i (y+) ,  the instantaneous 
profile u (y+) exhibits an inflexional character during turbulent bursting. 
This clearly suggests a strong similarity with the breakdown of the laminar 
boundary layer flow into turbulence. In fact, Kline et al.15 in their flow visu- 
alization study reported that the observed inflexional instantaneous velocity 
profiles lead to the growth of an oscillatory disturbance just downstream of 
the inflexional zone. This growth is rapid and the disturbance reaches a rela- 
tively large scale within one or two cycles of oscillation. 

Now, if polymer viscoelasticity tends to stabilize this locally unstable flow 
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condition and thus prevent or suppress the subsequent breakup of fluid ele- 
ments into large disturbances, this may lead to less turbulence production 
and therefore reduced turbulent wall shear stress or frictional drag. This was 
indeed Landahl’s argumentg in relating his stability calculation to this drag 
reduction mechanism. The second part of the present calculations for the 
step stretching pulse case clearly shows the favorable conditions under which 
high elongational viscosity may be maintained at a subsequent lower stretch- 
ing rate. As indicated in Figure 5, for = 1 and i=’o = 5, a subsequent stretch- 
ing rate of IT’o = 0.5 can keep a constant level of ij = 1.7 X lo3, representing a 
100-fold increase in the level of tensile stresses in the direction of stretching. 
According to polymer molecular theory,2l this may directly cause great mo- 
lecular extension. It is therefore suggested that the polymer molecules may 
have very well been largely extended during the bursting process and may 
lead to the kind of stabilization of small local disturbances presented by 
Landahl.g It is recommended that this possibility of molecular extension in 
flows such as turbulent shear layers by experimentally verified. Further- 
more, for formulating future constitutive relations of viscoelastic liquids ap- 
plicable under those flow conditions, the possibility that polymers maintain 
extended configuration should not be neglected. 
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